Abstract

The effects of silane temperature and ambient moisture on the ignition behavior are considered. The critical velocity for delayed ignition is determined for different silane temperatures and moisture contents in ambient air. The logarithm of the critical exit velocity is found to be inversely proportional to silane temperature. It is also observed that moisture in air has a strong inhibiting effect on silane autoignition in air. From a safety perspective, it is concluded that prompt ignition of silane is favored in a high-temperature and low-humidity environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.