Abstract

Abstract A two-dimensional symmetric heat transfer model and a fluid rotation model were established to study beer pasteurization process through the COMSOL Multiphysics software. Two heating modes, including closed-loop heating (CLH) and open-loop heating (OLH), were considered. There was a significant natural convection phenomenon in both heating systems. However, the natural convection became weaker with a gradual increase in the heating temperature of the beer. The maximum fluid velocity (FV) in CLH and OLH modes was 69.34 and 43.74 mm/s, respectively. After heating at 333.13 K for 20 min, the minimum and maximum pasteurization unit (PU) values in CLH were 55 and 59, respectively, while the corresponding values for OLH were 30 and 55, respectively. The pasteurization effect under the CLH mode was better than the OLH one. The heat transfer was also affected by fluid flow (laminar and turbulence) patterns. The PU value was nonlinearly related to the FV. The optimal FV can be obtained at ∼50 mm/s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call