Abstract

Ultrafine Ag–Cu nanoparticles (NPs) have been synthesized by a rapid one-step reduction within only 10 min. Effects of temperature and dispersants on the phases and morphology of Ag–Cu NPs were investigated. Results showed that citric acid exhibited an advantageous nature to avoid the formation of Cu2O and form uniform morphology over PVP. The average particle size of the Ag–Cu NPs synthesized simply in ice-cubes bath could be controlled in 8.6 nm about a quarter of that synthesized at room temperature. The synthesized Ag–Cu NPs presented alloy states near the eutectic composition of 72:28. Due to the lower Ostwald ripening rate and citric acid protection, smaller Ag–Cu NPs were achieved in ice-cube bath. Results also showed that the ultrafine Ag–Cu NPs could be expected to sinter at about 330 °C which was much lower than the eutectic temperature (779 °C) of bulk Ag–Cu alloy. The ultrafine Ag–Cu NPs could be applied as potential die attach materials for SiC power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.