Abstract

Two populations of Echinochloa crus-galli (Québec, Mississippi) were grown at the Duke University Phytotron under 2 thermoperiods (28°/22°C, 21°/15°C day/night) and 2 CO2 regimes (350 and 675 μl l-1). Thermostability, energy of activation (E a ),K m (PEP), K m (Mg++), and specific activity of phospho-enol-pyruvate carboxylase (PEPc) were analyzed in partially purified enzyme preparations of plants grown for 5 weeks. Thermostability of PEPc from extracts (in vitro) and leaves (in situ) was significantly higher in Mississippi plants. In vitro denaturation was not appreciably modified by thermal acclimation but CO2 enrichment elicited higher thermostability of PEPc. In situ thermostability was significantly higher than that of in vitro assays and was higher in Mississippi plants acclimated at 28°/22°C and in plants of the two ecotypes grown at 675 μl l-1 CO2. E a (Q 10 30°/20°C) for PEPc was significantly lower in Québec plants as compared to Mississippi and no acclimatory shifts were observed. Significantly higher K m's (PEP) in 20°C assays were obtained for Mississippi as compared to Québec plants but values were similar at 30°C and 40°C assays. K m (Mg++) decreased at higher assay temperatures and were significantly lower for PEPc of the Québec ecotype. No significant changes in K m (Mg++) values were associated with modifications in temperature on CO2 regimes. PEPc activity measured at 30°C was significantly higher for Québec plants when measured on a leaf fresh weight, leaf area or protein basis but not on a chlorophyll basis. Significantly higher PEPc activity for both genotypes was observed for plants acclimated at 21°/15°C or grown at 675 μl l-1 CO2. Net photosynthesis (Ps) and net assimilation rates (NAR) were higher in Québec plants and were enhanced by CO2 enrichment. NAR was higher in plants acclimated at low temperature, while an opposite trend was observed for Ps. PEPc activities were always in excess of the amounts required to support observed rates of CO2 assimilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.