Abstract

Contaminated food is a significant vehicle for human norovirus transmission. The present study determined the effect of physicochemical treatments on the tenacity of infective human norovirus genogroup II in selected foods. Artificially contaminated produce was subjected to a number of processes used by the food industry for preservation and by the consumer for storage and preparation. Virus recovery was carried out by using ultrafiltration and was monitored by using bacteriophage MS2 as an internal process control. Norovirus was quantified by using monoplex one-step TaqMan real-time reverse transcription (RT)-PCR and an external standard curve based on recombinant RNA standards. An RNase pretreatment step was used to avoid false-positive PCR results caused by accessible RNA, which allowed detection of intact virus particles. Significant reductions in titers were obtained with heat treatments usually applied by consumers for food preparation (baking, cooking, roasting). Generally, processes used for preservation and storage, such as cooling, freezing, acidification (>or=pH 4.5), and moderate heat treatments (pasteurization), appear to be insufficient to inactivate norovirus within a food matrix or on the surface of food. Besides data for persistence in processed food, comparable data for individual matrix-specific protective effects, recovery rates, and inhibitory effects on the PCRs were obtained in this study. The established procedure might be used for other noncultivable enteric RNA viruses that are connected to food-borne diseases. The data obtained in this study may also help optimize the process for inactivation of norovirus in food by adjusting food processing technologies and may promote the development of risk assessment systems in order to improve consumer protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.