Abstract

Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb pilus, is an essential virulence factor of V. cholerae Recent work has shown that TcpB is a large minor pilin encoded within the tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here, we have initiated a detailed targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of TcpB which affect either the steady-state level of TcpB or alter one or more TCP functions. This study provides a solid framework for further understanding of the complex role of TcpB and will be of use upon determination of the crystal structure of TcpB or related minor pilin orthologs of type IVb pilus systems. Type IV pili, such as the toxin-coregulated pilus (TCP) in V. cholerae, are bacterial appendages that often act as essential virulence factors. Minor pilins, like TcpB, of these pili systems often play integral roles in pilus assembly and function. In this study, we have generated mutations in tcpB to determine residues of importance for TCP stability and function. Combined with a predicted tertiary structure, characterization of these mutants allows us to better understand critical residues in TcpB and the role they may play in the mechanisms underlying minor pilin functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call