Abstract

Taurine, or 2-aminoethane sulfonic acid, is an intracellular amino acid and has been suggested to have a function in protecting biological systems from oxidative tissue damage. The aim of this study was to determine the effect of taurine against cerulein-induced acute pancreatitis in rats. Acute pancreatitis was induced by administering three subcutaneous injections of cerulein (40 µg/kg body weight) at 1-hour intervals, while taurine was administered intravenously at graded doses (30, 100, or 300 mg/kg, respectively) following the first cerulein injection. The severities of pancreatitis and lung injury were determined by measuring biochemical parameters, tissue myeloperoxidase (MPO), and histological changes. To clarify the mechanism of taurine, serum IL-1β and TNF-α levels and tissue concentrations of malondialdehyde (MDA) were evaluated. In cerulein-induced acute edematous pancreatitis, treatment with taurine significantly decreased hyperamylasemia, tissue MPO, pancreatic edema, and the extent of pancreatic and pulmonary injury. Taurine decreased MDA concentration in the pancreas and lung, but not the serum cytokine concentration. We would conclude that taurine has beneficial effects in cerulein-induced acute pancreatitis and lung injuries by preventing the production of oxygen free radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call