Abstract

Previous studies reported that the codeletion of PTEN and SOCS3 can greatly enhance the capacity of axon regeneration after central nervous system (CNS) injury. Moreover, the promotion of functional recovery can be improved by rehabilitative training under a use-dependent plasticity mechanism after CNS injury. However, few studies have reported the interaction between these mechanisms after spinal cord injury (SCI). Therefore, we investigated the combined effects of PTEN/SOCS3 coinhibition and rehabilitative training on axon regeneration and upper extremity motor functional improvement after cervical SCI in mice. In this study, we used RNA interference viruses to coinhibit PTEN and SOCS3 and induced a C5 crush injury on the side of preference. The injured upper extremity was trained by single pellet grasping for 4 weeks. We found that the coinjection of viruses significantly increased the expression of p-S6 and p-STAT in the cortex, reduced the dieback pattern of injured axons and promoted traced axon regeneration. More importantly, combination therapy further enhanced axon regeneration compared with PTEN/SOCS3 coinhibition alone. In behavioral tests, the motor performance of the mice in the PTEN/SOCS3 + Training group was better than that of the mice in the other groups. These results indicate that combining task-based rehabilitative training with PTEN/SOCS3 coinhibition further promotes axon regeneration and significant improvement in forelimb skilled motor function after cervical SCI. Our findings provide new therapeutic insights into SCI treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call