Abstract

We have determined the dependence of target-to-substrate angle on the elemental concentration of c-axis YBCO thin films. Away from the standard off-axis position, energy distributions of sputtered elements vary spatially within the sputter plume due to the angular dependence of thermalization. Standard materials characterization techniques and angle-dependent Rutherford Backscattering Spectrometry (RBS) demonstrate that films grown away from the standard off-axis geometry produce bulk Y(123) with modified surface morphology and deposition rate. Several thin film planar tunneling experiments are consistent with a broken-time-reversal symmetry (BTRS) state. To compliment tunneling measurements, we measure electron paramagnetic resonance (EPR) of the near-surface region of YBCO thin films. Preliminary data are consistent with the spontaneous formation of magnetic moments at low temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call