Abstract

This study was aimed to explore the role of tanshinol in osteoblastic cells, and the role in vivo using an ovariectomized (OVX) rat model of osteoporosis. MC3T3-E1 cells were pretreated with 0–400 μg/mL tanshinol, and then cell viability, apoptosis, alkaline phosphatase (ALP) activity and the expressions of Collagen Type I Alpha 1 (Col1A1), Runt Related Transcription Factor 2 (Runx2) and osteocalcin (OCN) were respectively detected. Rats underwent OVX surgery was intervened with 5 mg/kg tanshinol or 25 μg/kg β-estradiol (E2) for 12 weeks. The triglycerides (TG), total cholesterol (TC), high and low density lipoprotein cholesterol (HDL-C and LDL-C), ALP, OCN and Tartrate-resistant acid phosphatase-5b (TRACP-5b) contents were measured. Besides, the expressions of main factors in nuclear factor-kappa B (NF-κB) pathway were detected. The results showed that tanshinol significantly promoted MC3T3-E1 cells viability and ALP activity, while inhibited apoptosis (P < 0.05); Col1A1, Runx2 and OCN were all up-regulated by tanshinol (P < 0.05). In OVX rats, the contents of TG, TC, LDL-C, ALP, OCN and TRACP-5b were all increased (P < 0.05), while HDL-C was decreased (P < 0.05). Tanshinol significantly alleviated these aberrant regulations (P < 0.05). Inhibitory subunit of NF-κB (IκBα) and p65 were both remarkably phosphorylated by OVX, while this phosphorylation was partially neutralized by tanshinol (P < 0.05). In conclusion, we demonstrated that tanshinol exerted a bone-protective function by modulating the markers of bone turnover possibly via blocking NF-κB pathway. This study will provide new evidence that tanshinol is a potential therapeutic option for the relief of estrogen deficiency-induced osteoporosis.

Highlights

  • Osteoporosis is one type of bone metabolic disease characterized by low bone mineral density and deterioration of the bone microarchitecture [1]

  • The results showed that tanshinol significantly promoted MC3T3-E1 cells viability and alkaline phosphatase (ALP) activity, while inhibited apoptosis (P < 0.05); Col1A1, Runx2 and OCN were all up-regulated by tanshinol (P < 0.05)

  • To explore the functional effects of tanshinol on osteoblast, MC3T3-E1 cells were treated with 0–400 μg/mL tanshinol, and cell viability, apoptosis and ALP activity were respectively detected by MTT, flow cytometry, Western blot analysis and ALP assay kit

Read more

Summary

Introduction

Osteoporosis is one type of bone metabolic disease characterized by low bone mineral density and deterioration of the bone microarchitecture [1]. It is an increasingly important health problem which affects millions of people worldwide with significant impact on morbidity, mortality, quality of life and cost [2]. Osteoblast differentiation, an important process for its function, confers marked rigidity and strength to the bone while still maintaining some degree of elasticity [5]. It is beneficial for osteoporosis prevention and treatment to investigate how to promote osteoblast differentiation and increase bone mass

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call