Abstract

Abstract Thermal treatment is an effective method for improving the dimensional stability of wood; however, it typically requires high temperatures. To achieve low-temperature heat treatment, this study employed wood samples impregnated with 10 % tannin acid (TA) and examined their changes in dimensional stability and chemical components after heat treatment at various initial moisture content levels. The results revealed that the TA-10 %-HT group exhibited enhanced dimensional stability. Specifically, both the tangential and radial moisture swelling decreased by 21.7 % and 11.8 %, respectively. FTIR and XRD analysis indicated that the presence of tannin acid catalytically facilitated the degradation of hemicellulose. Moreover, an increase in moisture content resulted in the ionization of TA, amplifying acidity and further affecting cellulose degradation. TGA demonstrated that TA impacted the thermal stability of heat-treated materials by lowering the initial decomposition temperature of wood components and increasing the residual weight of wood. Overall, pretreatment with TA impregnation and moisture content significantly improved the dimensional stability of Chinese fir wood and altered its chemical composition. This approach holds considerable potential for enhancing wood properties through a low-energy consumption method during the heat treatment process, expanding the practical application of wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.