Abstract

Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with a relatively higher exposure, the present study provided preliminary molecular insights into the sexual disorder induced by antiestrogens and compounds that interrupted estrogen signaling by other modes of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.