Abstract

T-2 toxin (T-2) is a potent mycotoxin and a common contaminant of aquatic animal feed, posing a serious risk to health and aquatic animals. We investigated the effect of T-2 on shrimp muscle proteins using proteomics and conventional biochemical methods. Shrimp were fed a diet containing T-2 at 0-12.2mg kg-1 for 20 days, and changes to the muscle protein composition, ATPase activities, and the sulfhydryl (SH) content and hydrophobicity of actomyosin (AM) were determined. A proteomics study of the proteins was conducted with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) electrophoresis, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS). Exposure to T-2 markedly affected the muscle protein composition of shrimp in a concentration-responsive manner that displayed a diphasic effect. At a low T-2 concentration (1.2mg kg-1 ), the levels of three major muscle proteins (myofibrillar, sarcoplasmic, and stroma) increased but at higher concentrations they declined progressively. T-2 exposure also led to a breakdown of muscle proteins as evidenced by increases in alkali-soluble protein and the surface hydrophobicity (SoANS) of AM. Thirty differentially expressed proteins were detected, 12 of which showed a concentration-response relationship with T-2 exposure. Among them, 11 homologous proteins were identified by mass spectrometry (MS), with several being key enzymes in energy metabolism. This study demonstrated that T-2 exposure at medium to high concentrations could significantly affect the protein composition and quality of shrimp muscle, and potentially some of its key metabolisms. One of the arginine kinases (spot 27) was particularly responsive to T-2 and could potentially be used as a biomarker protein for T-2 intoxication by shrimp. © 2019 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.