Abstract

The opposing problems of graft-vs-host disease vs failure of alloengraftment severely limit the success of allogeneic bone marrow transplantation as a therapeutic modality. We have recently used a murine bone marrow transplantation model involving reconstitution of lethally irradiated mice with mixtures of allogeneic and syngeneic marrow to demonstrate that an allogeneic bone marrow subpopulation, removed by T cell depletion with rabbit anti-mouse brain serum and complement (RAMB/C), is capable of increasing levels of allogeneic chimerism. This effect was observed in an F1 into parent genetic combination lacking the potential for graft-vs-host disease, and radiation protection studies suggested that it was not due to depletion of stem cells by RAMB/C. We have now attempted to characterize the cell population responsible for increasing allogeneic chimerism in this model. The results indicate that neither mature T cells nor NK cells are responsible for this activity. However, an assay involving mixed marrow reconstitution in an Ly-5 congenic strain combination was found to be more sensitive to small degrees of stem cell depletion than radiation protection assays using three-fold titrations of bone marrow cells. Using this assay, we were able to detect some degree of stem cell depletion by treatment with RAMB/C, but not with anti-T cell mAb. Nevertheless, if the effects of alloresistance observed in this model are considered, the degree of stem cell depletion detected by such mixing studies in insufficient to account for the effects of RAMB/C depletion on levels of allogeneic chimerism, suggesting that another cell population with this property remains to be identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.