Abstract

This paper studies a class of queueing control problems involving commonly used control mechanisms such as admission control and pricing. It is well established that in a number of these problems, there is an optimal policy that can be described by a few parameters. From a design point of view, it is useful to understand how such an optimal policy varies with changes in system parameters. We present a general framework to investigate the policy implications of the changes in system parameters by using event-based dynamic programming. In this framework, the control model is represented by a number of common operators, and the effect of system parameters on the structured optimal policy is analyzed for each individual operator. Whenever a queueing control problem can be modeled by these operators, the effects of system parameters on the optimal policy follow from this analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.