Abstract

The geomagnetically induced currents (GICs) produced in power systems during magnetic storms are a function of the electric-field amplitude and direction, and the characteristics of the power system. This paper examines the influence of a number of power system characteristics, which include the resistances and structures of the conductors; the length of the transmission lines; the number, type, and resistances of transformers, the substation grounding resistances, and the topology of the network. It is shown that GIC grows with increasing line length but approaches an asymptotic constant value, and a more relevant parameter than the individual line length is the length of the entire system. This paper also derives the effective GIC for a conventional transformer and an autotransformer, and analyzes the behavior of GIC when the network topology changes illustrated with the GIC-Benchmark Model. The results of these studies provide a guide to estimating GIC impacts on a power network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call