Abstract
Sr2-x SiO4 -xEu (x = 0.01, 0.02, 0.035, and 0.05) phosphors were synthesized at 1000-1,300°C for 2 h in two different processes, the solid-state reaction (SSR) method and a two-step (TS) method, and these results revealed three important findings. The secondary Sr3 SiO5 phase was observed in 1,300° C-TS-synthesized Sr2-x SiO4 -xEu powder, but no raw materials or secondary phases were observed in the SSR-prepared Sr2-x SiO4 -xEu powders. The concentration quenching effect of Eu3+ ions was really observed in TS-prepared Sr2-x SiO4 -xEu phosphors, which was not observed in SSR-prepared Sr2-x SiO4 -xEu phosphors. High emission intensity of charge transition state (CT) band was observed in the photoluminescence excitation spectra, for that the 265 and 393 nm were used as the excitation wavelengths of Sr2-x SiO4 -xEu phosphors. Sr2-x SiO4 -xEu phosphors under different synthesis processes and excitation wavelengths would have different main emission peaks in the photoluminescence emission spectra. In this study, we also well discussed and explored the relationships of photoluminescence properties with the dipole transitions (electric or magnetic) of Eu3+ ions and the different coordination structures of Sr+2 ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Luminescence : the journal of biological and chemical luminescence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.