Abstract

The heparan sulfate proteoglycans, syndecan-1 and glypican, are low-affinity receptors for fibroblast growth factor 2 (FGF2). Because FGF2 is a potent stimulator of skeletal muscle cell proliferation and a strong inhibitor of differentiation, it is likely that changes in syndecan-1 and glypican expression will affect myogenesis as both, in part, regulate FGF-dependent signaling. In the current study, expression vector constructs containing either syndecan-1 or glypican were transfected into turkey myogenic satellite cells resulting in the overexpression of these genes. The amount of expression of each of these genes was measured by semiquantitative reverse transcriptase polymerase chain reaction. The satellite cell cultures overexpressing syndecan-1 were unable to fuse to form multinucleated myotubes after differentiation was induced. The syndecan-1-transfected cells maintained a rounded morphology typical of cells during proliferation. In contrast, the satellite cells transfected with glypican formed larger myotubes. These results suggest that both syndecan-1 and glypican play pivotal, but different, roles in both muscle cell proliferation and differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call