Abstract
This paper presents a distinctive phonetic features (DPFs) based phoneme recognition method by incorporating syllable language models (LMs). The method comprises three stages. The first stage extracts three DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and LMs of syllable-based subwords to output more precise phoneme strings. From the experiments, it is observed that the proposed method provides a higher phoneme correct rate as well as a tremendous improvement of phoneme accuracy. Moreover, it shows higher phoneme recognition performance at fewer mixture components in hidden Markov models (HMMs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.