Abstract

It is well established that the plane-parallel models of foam and emulsion films underestimate the velocity of film thinning by up to several orders of magnitude and show an incorrect dependence of thinning velocity on film radius. A new theory of film thinning has been previously formulated for tangentially immobile films [12, 13], and shows that the reason for this discrepancy is the neglect of experimentally observed finite amplitude surface waves. For thin films of relatively large radii (> 1o−2 cm), the pumping of the fluid generated by oscillations of the surface waves, provides the dominant contribution to film thinning velocity. The present hydrodynamic model includes the effects of surfactants (Marangoni-Gibbs-effect, surface viscosity and surface diffusion) and surface waves on thinning velocity. As in the case of a tangentially immobile film, it is concluded that the thinning velocity varies inversely with less than the first power of the film radius, and not with the square of the film radius, as predicted by the plane-parallel models of thin film. Also, the velocity of thinning is found to be up to several orders of magnitudes larger than that evaluated from the plane-parallel models. The influence of waves in enhancing the thinning velocity is found to be most significant for a tangentially immobile film and this effect decreases by a factor of up to 3, with a decrease in surface elasticity and surface viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call