Abstract
Large eddy simulation (LES) was performed for turbulent channel flow with and without surfactant additives at Reτ = 590. Since turbulent channel flow can be divided into linear substrate layer, buffer layer, logarithm layer and outer layer along the wall-normal direction, so study on the flow properties at different layers in turbulent channel flow of viscoelastic fluid is significant for investigating turbulent drag-reducing mechanism and realizing the control of turbulent drag-reducing flow in the future. In this present work, the influences of surfactant additives on flow properties at different y locations were analyzed by researching the mean streamwise velocity, the root-mean-square velocity fluctuations, Reynolds shear stress and the contributions of different parts to turbulent kinetic energy, as well as the scaling law for four layers by two-dimensional wavelet transform. From the viewpoint of the above results, it is showed that the buffer layer tends to get wider in viscoelastic fluid and it is also demonstrated that viscoelastic effect mainly inhibits the coherent structures in the buffer layer, which are ejected from the linear substrate layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.