Abstract

The surface wettability plays a significant role in two-phase flow in the gas diffusion layer (GDL). However, few reported researches have considered directional single gradient polytetrafluoroethylene (PTFE) distribution, PTFE immersion depth, and the GDL compression. In this study, effects of various surface wettability distribution schemes on two-phase flow in the GDL microstructures are investigated. In addition, the GDL deformation is also considered via clamping pressure simulation based on the finite element method (FEM). Two-phase flow in the compressed GDL microstructures is modeled using the volume of fluid (VOF) model. The results show that the direction of single gradient of the surface wettability is influential in two-phase flow, especially for the compressed GDL. Moreover, thicker PTFE immersion depth contributes to water removal from the GDL. Finally, novel surface wettability distribution schemes are first proposed, and they are demonstrated as important references for controllable water transport in the GDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.