Abstract

To achieve better chemical affinity between conducting polyaniline (PANI) and soft magnetic carbonyl iron (CI) microspheres, we initially attached hydroxyl groups to the surface of CI using p-toluenesulfonic acid monohydrate. The PANI-coated CI composite particles were then fabricated via a chemical oxidation polymerization method. Both the aniline monomer and anilinium cation tended to surround the activated surface of the CI microspheres due to hydrogen bonding and electrostatic interactions, providing a better core-shell shape of the CI/PANI particles. Crystallinity of the product particles and bonding between CI and PANI were measured by X-ray diffraction and FT-IR spectroscopy, respectively, while the shell morphology and thermal stability were measured by scanning electron microscope and thermogravimetric analysis, respectively, confirming the successful coating performance. Viscoelastic behaviors of the MR fluid prepared by suspending the magnetic particles in medium oil were measured via a rotation rheometer under an induced magnetic field. It also exhibited a typical MR flow behavior, which was analyzed using various rheological models. Its sedimentation was detected using a Turbiscan, showing a 60% and 11% improved dispersion stability at 200min and 900min, respectively, compared to the pure CI particles by decreasing the density mismatch between composite particle and silicone oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.