Abstract

Surface tension and viscosity act as important roles on the fluid flow in microchannel channels. In order to understand the influencing mechanism, three dimensional numerical simulations as well as experimental investigations were carried out on the slug formation and transfer in a rectangle T-junction microchannel. The simulation showed that the increasing Capillary number (Ca) resulted in the decreasing slug volume. Due to the existence of film thickness and corner flow, the characteristic length of slug was not the same trend completely. The results also showed that the pressure of junction point fluctuated periodically in the process of slug formation, which can reflect the slug formation period and the effect of the various conditions on pressure change. Two other pressure monitoring points were located in vertical channel and main channel and they monitored the pressure of two phase flow respectively. The increasing surface tension resulted in an increasing of total pressure, the interface pressure drop of two phases and the period of slug formation. The frequency of slug formation and two phases total pressure increased with the viscosity of continuous phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call