Abstract

Nanoindentation technique, which is based on Hertzian contact theory and Sneddon's solutions for the contact between a rigid indenter and an elastic half-space, has been widely investigated due to its practical importance in localized mechanical test of submicron structures. However, both the Hertzian contact theory and Sneddon's solutions do not take into account the contribution of surface stress to contact deformation. In this work, we study the effect of surface stress without the out-of-plane term on the indentation deformation of an elastic half-space by rigid, axisymmetric indenters, including flat-ended cylindrical, conical and spherical indenters. In contrast to classical theories, which are based on physically admissible condition of finite normal stress at contact edge, an alternative condition of geometrical continuity at contact edge is used to determine the contact radius. The numerical results reveal the combinational effects of the surface stress and Poisson's ratio on the load-displacement relationship for the indentation of the elastic half-space. The surface stress causes significant change in shear stress and modest variation in normal stress in the direction normal to the surface of the elastic half-space. The numerical method used in this work offers a feasible approach to study the effect of surface stress on the contact deformation of elastic substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.