Abstract

The laminar filmwise condensation heat transfer coefficient on the horizontal tubes of copper and stainless steel was investigated. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 1.07 to 1.6 mm. The polished stainless steel tube had an RMS surface roughness of 0.37 μm, and commercial stainless steel tubes had maximum surface roughness of 15 μm. The tests were conducted at saturation temperatures of 20 and 30 °C, and liquid wall subcoolings from 0.4 to 2.1 °C. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis when the ratio of the condensate liquid film thickness to the surface roughness, δ / R p–v, was relatively low. When the condensate liquid film was very thin, tube material affected the condensation heat transfer coefficient in the filmwise condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.