Abstract
We investigate the effect of a common TiO2 passivation reagent, TiCl4, on the photoinduced charge transfer of poly(3-hexylthiophene) (P3HT) to TiO2 in the inverse opal structure. Treating the inorganic oxide framework with TiCl4 leads to an increase in the size of the TiO2 nanoparticles, a thickening of the inverse opal framework, and a decrease in the trap-state photoluminescence. These changes lead to different energy alignments at the interface. In comparison to the unpassivated P3HT/TiO2 inverse opal, we measured a larger polaron yield, by as high as ninefold, and significantly shorter and more uniformly distributed polaron lifetimes in TiCl4-treated samples. We show that downward band bending in the polymer can be circumvented by tuning the trap states on the metal oxide using TiCl4, thereby eliminating the energetic barrier for photoelectron injection from the polymer to the metal oxide. The findings suggest a way to overcome a potential factor that has plagued the performance of metal oxide–polymer...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.