Abstract

The effects of surface markings on perceived motion direction were examined for a rotating sphere in a structure-from-motion display. The markings were dot patterns representing separate line segments or intersecting line segments (crosses) covering the surface of the sphere. The orientation of the surface markings and their intersection angles affected the perceived direction of motion, suggesting that the markings were not interpreted as geodesics or planar cuts on the surface. The perceived direction of motion was biased towards the mean orientation of the markings over the visible area of the surface. A similar bias was observed for translating planar stimuli covered with crosses, suggesting that the bias is not specific to curved surfaces or motion in depth. The deviation between the simulated motion direction and the external horizontal and vertical axes also affected the perceived motion direction. These results suggest that the average orientation of surface contours with respect to an external reference frame influences the perceived direction of motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.