Abstract

The formation of peptide aggregates mediated by an attractive surface is investigated using replica exchange molecular dynamics simulations with a coarse-grained peptide representation. In the absence of a surface, the peptides exhibit a range of aggregate morphologies, including amorphous aggregates, β-barrels and multi-layered fibrils, depending on the chiral stiffness of the chain (a measure of its β-sheet propensity). In contrast, aggregate morphology in the presence of an attractive surface depends more on surface attraction than on peptide chain stiffness, with the surface favoring fibrillar structures. Peptide-peptide interactions couple to peptide-surface interactions cooperatively to affect the assembly process both qualitatively (in terms of aggregate morphology) and quantitatively (in terms of transition temperature and transition sharpness). The frequency of ordered fibrillar aggregates, the surface binding transition temperature, and the sharpness of the binding transition all increase with both surface attraction and chain stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.