Abstract

LES (Large-Eddy Simulation) computations for a high-lift low-pressure turbine profile equipped with the span-wise groove on the suction surface are done to investigate the mechanism of the surface groove for separated flow transition control under steady inflow conditions, employing the dynamic Smagorinsky model. In addition to the baseline case (no groove), three groove positions which depend on the relative position of the groove trailing edge and the separation point on the suction surface are considered at two Reynolds numbers (Re, based on the inlet velocity and axial chord length). The results show that all grooves can reduce the calculated loss for Re = 50000, due to the further upstream transition inception in the separated shear layer. The analyses indicate two kinds of control mechanism such as the thinning of boundary layer behind the groove and the introduction of disturbances within the groove, depending on the groove position and Reynolds number. At Re = 50000, for the groove located upstream of the separation point, the reason for the further upstream transition inception location is the thinning of boundary layer behind the groove, and for the groove located downstream of the separation point, the reason is the introduction of disturbances within the groove. At Re = 100000, disturbances can also be generated within the groove located upstream of the separation point, promoting earlier transition inception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call