Abstract

In this paper, vibration analysis of double-walled piezo-viscoelastic cylindrical nanoshell integrated with piezoelectric layers is investigated using Gurtin–Murdoch surface/interface theory and Donnell's theory. Three parameters namely, shear modulus, damp coefficient, and Winkler modulus are used for simulation of visco-Pasternak model. Hamilton's principle is used for deriving the governing equations and boundary conditions and also the assumed mode method is used for changing the partial differential equations into ordinary differential equation. The effects of the surface energy, length and thickness of nanoshell and piezoelectric layer, boundary condition, van der Waals force, and visco-Pasternak effects on the undamped and damped natural frequencies of piezo-viscoelastic cylindrical nanoshell is studied. Also, the results show that on considering surface effects in the nanoscale system without considering the surface density, the maximum frequency will be obtained and this case will be considered as the critical state of the system. As a result, controlling the frequency of the system in this case is essential and it is quite clear that considering the effects of the surface energy will have a remarkable effect on the natural frequency of the piezo-viscoelastic nanoshell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call