Abstract

La0.75Mg0.25Ni3.2Co0.2Al0.1 hydrogen storage alloy, the nickel-metal hydride (MH/Ni) secondary battery negative electrode, was modified by CuSO4 solution (3 wt% in Cu in contrast with alloy weight) and PdCl2 solution varied from 1 wt% to 4 wt% in Pd in contrast with alloy weight with a simplified pollution-free replacement plating method, aiming at improving its comprehensive electrochemical properties. The XRD analysis and SEM images combined with EDS results reveal that Cu and Pd nanoparticles are uniformly plated on the pristine alloy surface. The relative amount of Pd on the Cu-Pd coated alloy surface increases notably as the PdCl2 concentration increases in the plating solution. Electrochemical tests indicate that alloy electrodes modified by Cu-Pd composite coating show perfect activation performance, which achieve the maximum discharge capacity at the first charge-discharge cycle. Moreover, alloy electrodes coated with Cu-Pd perform dramatically enhanced high rate dischargeability (HRD). The enhancement increases firstly and then decreases as the content of Pd increases in the Cu-Pd coating. Meanwhile, the cycle life of modified alloys is also improved significantly. Among all the samples, the Cu-Pd coated alloy with 3 wt% Pd content in the PdCl2 solution reinforces the comprehensive electrochemical properties most sufficiently, with dischargeability of 86.4% under 1500 mA/g and remaining capacity of 82.7% after 100 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.