Abstract

The effects of surface chemistry on the isotherm thickness and structure of the adsorbed water layer as well as the isosteric heat of adsorption and entropy of adsorption were studied using attenuated total reflection infrared spectroscopy. The degree of hydrophilicity seems to distinctively change the structure and thermodynamic properties of the water layers adsorbed on silicon oxide surfaces. On the highly hydrophilic silicon oxide surface covered with silanol groups, the water layer adsorbed at low humidities exhibits the OH stretching peak at 3230 cm−1 (characteristic of a solid-like water structure), and the isosteric heat of adsorption is much higher than the latent heat of ice sublimation. As the concentration of surface silanol groups decreases, both the initial isosteric heat of adsorption of water and the amount of solid-like water decrease. The water layer adsorbed on the hydrophilic surface at low humidities seems to have much lower entropies than bulk water, while the entropy of the water la...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call