Abstract

This study synthesized platinum (Pt) nanoparticles supported on carbon nanotubes (CNTs) using a microwave-assisted polyol method. The oxidation treatment of CNTs introduced primarily –OH and –COOH groups to the CNTs, thereby enhancing the reduction of Pt ionic species, resulting in smaller Pt particles with improved dispersion and attachment properties. The Pt particles supported on oxidized CNTs displayed superior durability to those on pristine CNTs or commercially available Pt/C. These improvements are most likely associated with the percentage of metallic Pt in the particles. After 400 cycles, the losses of electrochemical surface area in Pt nanoparticle supported on oxidized CNTs and pristine CNTs catalysts were 66 and 84%, respectively, of that associated with commercial Pt/C. A single proton exchange membrane fuel cell using Pt supported on oxidized CNTs at the cathode with a total catalytic loading of 0.6 Pt mg cm −2 exhibited the highest power density of 890 mW cm −2 and displayed a lower mass transfer loss, compared to Pt/C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.