Abstract

Bulk nanomaterials with an open porosity offer exciting prospects for creating new functional materials for various applications in photonics, IR-THz optics, metamaterials, heterogeneous photocatalysis, monitoring and cleaning toxic impurities in the environment. However, their availability is limited by the complexity of controlling the process of synthesis of bulk 3D nanostructures with desired physicochemical and functional properties. In this paper, we performed a detailed analysis of influence of a silica monolayer chemically deposited on the surface of a monolithic ultraporous nanostructure, consisting of a 3D nanofibril network of aluminum oxyhydroxide, on the evolution of structure and morphology, chemical composition and phase transformations after heat treatment in the temperature range of 20−1700 °C. The experimental results are interpreted in the framework of a physical model taking into account surface and volume mass transport and sintering kinetics of nanofibrils, which made it possible to estimate activation energies of the surface diffusion and sintering processes. It is shown that the presence of a surface silica monolayer on the surface affects the kinetics of aluminum oxyhydroxide dehydration and inhibits diffusion mass transfer and structural phase transformations. As a result, the overall evolution of the 3D nanostructure significantly differs from that of nanomaterials without surface chemical modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.