Abstract

Molecular dynamics simulations of model charged solid/water interfaces were carried out to provide insight about the relationship between the second-order nonlinear susceptibility χ(2) and the structure of the interfacial water layer. The results of the calculations reveal that the density fluctuations of water extend to about 12 Å from the surface regardless of the system, while the orientational ordering of molecules is long-ranged and is sensitive to the presence of electrolytes. The charge localization on the surface was found to affect only the high-frequency part of the Im[χ(2)] spectrum, and the addition of salt has very little effect on the spectrum of the first water layer. For solid/neat water interfaces, the spectroscopically active part of the liquid phase has a thickness largely exceeding the region of density fluctuations, and this long-ranged nonlinear activity is mediated by the electric field of the molecules. The electrolyte ions and their hydration shells act in a destructive way on the molecular field. This effect, combined with the screening of the surface charge by ions, drastically reduces the thickness of the spectroscopic diffuse layer. There is an electrolyte concentration at which the nonlinear response of the diffuse layer is suppressed and the χ(2) spectrum of the interface essentially coincides with that of the first water layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.