Abstract

ABSTRACT: The production of xanthan gum, an industrially important microbial exopolysaccharide, was enhanced by using Xanthomonas campestris cells adsorbed to cotton fibers. However, the function of xanthan polymers during cell adsorption has not been elucidated. Polyethylenimine (PEI), a cationic polyelectrolyte, was employed to investigate respective effects of fiber surface properties and xanthan polymers during cell adsorption. Adsorption of X. campestris cells to fiber was independent of fiber roughness and hairiness, and the effect of electrostatic interactions between cells and fiber was insignificant. Fiber hydrophilicity was critical in initiating cell‐fiber contacts, whereas xanthan polymers enhanced retention of cells on fiber surface. The untreated cotton showed the highest immobilization efficiency and xanthan production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.