Abstract

AbstractIn this paper, effects of the surface-catalysis efficiency on aeroheating characteristics are studied. The Navier–Stokes solver with a cell-centered finite-volume scheme, including the finite-rate chemistry and two-temperature thermal nonequilibrium models, is implemented in this work. The ELECTRE flight trajectory at 53 km is used for validating the developed solver. Several cases with different catalytic recombination coefficients are studied to investigate the effects of catalysis efficiency under the condition of radiative equilibrium for the C series of Radio Attenuation Measurement project II flight trajectory at 71 km. It is revealed that distributions of heat flux and wall temperature have the similar tendency for all cases except for the Stewart model. Heat flux and wall temperature do not grow endlessly as the catalytic recombination coefficients are increased. It is the gradient of species density rather than gradient of temperature that leads to the significant differences of heat flux...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.