Abstract

BackgroundMaternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. The experiment investigated the effects of late gestation supplements (77 d prepartum), either rich in saturated and monounsaturated fatty acids (CON; 155 g/cow/d EnerGII) or polyunsaturated fatty acids (PUFA; 80 g/cow/d Strata and 80 g/cow/d Prequel), on cow performance and subsequent calf growth performance as well as mRNA expression in longissimus muscle (LM) and subcutaneous adipose tissue at birth and weaning.ResultsThere was no difference (P ≥ 0.34) in cow body weight (BW) or body condition score from pre-supplementation through weaning. Relative concentrations of C18:3n-3 and C20:4n-6 decreased (P ≤ 0.05) to a greater extent from mid-supplementation to calving for PUFA compared with CON cows. Cow plasma C20:0, C20:5n-3, and C22:6n-3 were increased (P ≤ 0.01) in PUFA during supplementation period. At birth, PUFA steers had greater (P = 0.01) plasma C20:5n-3. No differences (P ≥ 0.33) were detected in steer birth BW or dam milk production, however, CON steers tended (P = 0.06) to have greater pre-weaning average daily gain and had greater (P = 0.05) weaning BW compared with PUFA. For mRNA expression in steers: MYH7 and C/EBPβ in LM increased (P ≤ 0.04) to a greater extent from birth to weaning for PUFA compared with CON; MYF5 in LM and C/EBPβ in adipose tissue tended (P ≤ 0.08) to decrease more from birth to weaning for CON compared with PUFA; SCD in PUFA adipose tissue tended (P = 0.08) to decrease to a greater extent from birth to weaning than CON. In addition, maternal PUFA supplementation tended (P = 0.08) to decrease MYOG mRNA expression in LM and decreased (P = 0.02) ZFP423 in adipose tissue during the pre-weaning stage.ConclusionsLate gestation PUFA supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period.

Highlights

  • Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance

  • Late gestation polyunsaturated fatty acids (PUFA) supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period

  • In the current study, cows rotationally grazed on tall fescue pastures with no difference in forage availability (CON: 2015 kg dry matter (DM)/ha, PUFA: 1957 kg DM/ha at the end of rotation; P = 0.28) during the supplementation period

Read more

Summary

Introduction

Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. By supplementing dietary fatty acids, the fatty acid profile of blood and tissues of the dams can be altered [9]. Especially essential fatty acids (EFAs), are important ligands for regulating protein and lipid metabolism, which can influence the development of fetal muscle and adipose tissue during critical periods. There is still lack of knowledge on whether the fetal fatty acids or modified dam metabolism would cause the fetal programming effects on the offspring

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call