Abstract

BackgroundWhilst the ergogenic effects of carbohydrate intake during prolonged exercise are well-documented, few investigations have studied the effects of carbohydrate ingestion during cross-country skiing, a mode of exercise that presents unique metabolic demands on athletes due to the combined use of large upper- and lower-body muscle masses. Moreover, no previous studies have investigated exogenous carbohydrate oxidation rates during cross-country skiing. The current study investigated the effects of a 13C-enriched 18% multiple-transportable carbohydrate solution (1:0.8 maltodextrin:fructose) with additional gelling polysaccharides (CHO-HG) on substrate utilization and gastrointestinal symptoms during prolonged cross-country skiing exercise in the cold, and subsequent double-poling time-trial performance in ~ 20 °C.MethodsTwelve elite cross-country ski athletes (6 females, 6 males) performed 120-min of submaximal roller-skiing (69.3 ± 2.9% of dot{mathrm{V}} O2peak) in −5 °C while receiving either 2.2 g CHO-HG·min− 1 or a non-caloric placebo administered in a double-blind, randomized manner. Whole-body substrate utilization and exogenous carbohydrate oxidation was calculated for the last 60 min of the submaximal exercise. The maximal time-trial (2000 m for females, 2400 m for males) immediately followed the 120-min submaximal bout. Repeated-measures ANOVAs with univariate follow-ups were conducted, as well as independent and paired t-tests, and significance was set at P < 0.05. Data are presented as mean ± SD.ResultsExogenous carbohydrate oxidation contributed 27.6 ± 6.6% to the total energy yield with CHO-HG and the peak exogenous carbohydrate oxidation rate reached 1.33 ± 0.27 g·min− 1. Compared to placebo, fat oxidation decreased by 9.5 ± 4.8% with CHO-HG, total carbohydrate oxidation increased by 9.5 ± 4.8% and endogenous carbohydrate utilization decreased by 18.1 ± 6.4% (all P < 0.05). No severe gastrointestinal symptoms were reported in either trial and euhydration was maintained in both trials. Time-trial performance (8.4 ± 0.4 min) was not improved following CHO-HG compared to placebo (− 0.8 ± 3.5 s; 95% confidence interval − 3.0 to 1.5 s; P = 0.46). No sex differences were identified in substrate utilization or relative performance.ConclusionsIngestion of an 18% multiple-transportable carbohydrate solution with gelling polysaccharides was found to be well-tolerated during 120 min of submaximal whole-body exercise, but did not improve subsequent maximal double-poling performance.

Highlights

  • Whilst the ergogenic effects of carbohydrate intake during prolonged exercise are well-documented, few investigations have studied the effects of carbohydrate ingestion during cross-country skiing, a mode of exercise that presents unique metabolic demands on athletes due to the combined use of large upper- and lowerbody muscle masses

  • Ingestion of an 18% multiple-transportable carbohydrate solution with gelling polysaccharides was found to be well-tolerated during 120 min of submaximal whole-body exercise, but did not improve subsequent maximal double-poling performance

  • The present study demonstrated that frequent ingestion of CHO during 120 min of moderate-intensity diagonal roller-skiing did not enhance performance during a subsequent self-paced, double-poling time-trial in elite XC ski athletes

Read more

Summary

Introduction

Whilst the ergogenic effects of carbohydrate intake during prolonged exercise are well-documented, few investigations have studied the effects of carbohydrate ingestion during cross-country skiing, a mode of exercise that presents unique metabolic demands on athletes due to the combined use of large upper- and lowerbody muscle masses. No previous studies have investigated exogenous carbohydrate oxidation rates during cross-country skiing. The current study investigated the effects of a 13C-enriched 18% multiple-transportable carbohydrate solution (1:0.8 maltodextrin:fructose) with additional gelling polysaccharides (CHO-HG) on substrate utilization and gastrointestinal symptoms during prolonged cross-country skiing exercise in the cold, and subsequent double-poling time-trial performance in ~ 20 °C. Since intestinal absorption is likely the main rate-limiting step in exogenous CHO delivery to muscle during exercise, previous studies have attempted to optimize absorption rates by saturating different intestinal transport mechanisms. By ingesting mixtures of glucose and fructose, which are absorbed by different transporters (SGLT1 and GLUT-5, respectively), exogenous CHO oxidation rates have been demonstrated to increase 1.2- to 1.7-fold during prolonged exercise. Research suggests reductions in gastrointestinal (GI) discomfort following intake of multiple-transportable CHO mixtures compared to isocaloric glucose-only intakes [2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call