Abstract

The airlift internal circulation reactor for partial nitrification-anammox (PNA-ALR) has the advantages of a small footprint, high mass transfer efficiency, and the ease of formation of granular sludge, thus making it an effective biological treatment for ammonia-containing wastewater. Although superficial gas velocity (SGV) is an essential parameter for PNA-ALR, it is unclear how the magnitude of SGV impacts nitrogen removal performance. In this study, the nitrogen removal efficiencies of five PNA-ALRs with different SGV were measured during feeding with synthetic municipal wastewater. At an optimal SGV of 2.35 cm s−1, the PNA-ALR consistently maintained the total inorganic nitrogen (TIN) removal efficiency at 76.31% and the effluent TIN concentration was less than 10 mg L−1. By increasing or decreasing the SGV, the nitrogen removal efficiency decreased to a range between 30% and 50%. At lower SGV, the dead space in the PNA-ALR was increased by 21.15%, and the feast/famine ratio of sludge increased to greater than 0.5, which caused a disruption in the structure, and a large loss of, granular sludge. Computational fluid dynamics (CFD) simulations showed operation at a higher SGV, resulting in excessive shear stress of 3.25 N m−2 being generated from bubble rupture in the degassing section. Fluorescent staining determined a decrease of 26.5% in viable bacteria. These results have improved our understanding of the effects of SGV on a PNA-ALR during mainstream wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call