Abstract

Concerns regarding excessive hepatic copper concentrations in dairy cows have increased. The objective of this study was to determine the association of hepatic copper concentrations with evidence of liver disease. Blood and liver samples were collected at the time of slaughter in cull dairy cows (n=100). Liver samples were analyzed for copper using inductively coupled plasma mass spectrometry and crude fat using liquid-liquid extraction and gravimetry. Serum samples were analyzed for glutamate dehydrogenase, γ-glutamyltransferase, sorbitol dehydrogenase, aspartate aminotransferase activities, and bile acid concentrations. Liver samples were examined histologically for inflammation, fibrosis, and rhodanine staining. Animals were stratified by hepatic copper concentration and samples in the highest and lowest quintiles (Q5 and Q1) were evaluated for oxidative stress. Systemic indices of oxidative stress included serum reactive oxygen and nitrogen species (RONS) and total antioxidant potential (AOP). Tissue-level oxidative stress was assessed by immunohistochemistry using 4-hydroxynonenal (4HNE) and 3-nitrotyrosine (3NIT) stains to score the relative abundance and distribution of oxidized lipid and protein products, respectively. Mean hepatic copper concentration was 496.83 μg/g and median 469.72 μg/g and ranged from 70.56 to 1264.27 μg/g dry tissue. No association was found between hepatic copper concentrations and clinicopathological or histological evidence of hepatic damage or dysfunction. There was a significant increase in the amount of IHC staining of 4HNE and 3NIT in Q5 compared with Q1. Moreover, the IHC staining mirrored the distribution of the copper-specific stain rhodanine. These results demonstrate that cows with elevated hepatic copper concentrations had no evidence of active liver disease but had increased hepatic oxidative stress.

Highlights

  • Copper is an essential cofactor in hundreds of enzymatic reactions and is a necessary component of the diet of all species [1]

  • This study found no association with elevated hepatic copper concentrations and liver disease as indicated by factor 1

  • IHC staining distribution mirrored that of rhodanine staining within hepatic lobules (Figure 2). These findings suggest super nutritional, but subtoxic, hepatic copper accumulation does increase risk of local oxidative stress in the liver. 4HNE stains have been used to study the pathogenesis of copper accumulation in Long-Evans Cinnamon (LEC) rats which serve as a model for Wilson’s Disease in humans

Read more

Summary

Introduction

Copper is an essential cofactor in hundreds of enzymatic reactions and is a necessary component of the diet of all species [1]. Due to its high redox potential, excessive hepatic copper could cause oxidative damage to hepatocellular lipids, proteins, and DNA. This can lead to organelle dysfunction and apoptosis [5]. Excessive hepatic copper accumulation in dairy cattle has been of growing concern in recent years [11,12,13,14]. Despite these accounts, the impact of elevated hepatic copper concentrations on bovine health, short of fulminant toxicosis, is not well understood

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call