Abstract

Epigenetic changes, including aberrant DNA methylation, result in altered gene expression and play an important role in carcinogenesis. Phytochemicals such as sulforaphane (SFN) and 3,3′-diindolylmethane (DIM) are promising chemopreventive agents for the treatment of prostate cancer. Both have been shown to induce re-expression of genes, including tumor suppressor genes silenced in cancer cells, via modulation of epigenetic marks including DNA methylation. However, it remained unclear the effects SFN and DIM on DNA methylation at a genomic scale. The goal of this study was to determine the genome-wide effects of SFN and DIM on promoter methylation in normal prostate epithelial cells and prostate cancer cells. Both SFN and DIM treatment decreased DNA methyltransferase expression in normal prostate epithelial cells (PrEC), and androgen-dependent (LnCAP) and androgen-independent (PC3) prostate cancer cells. The effects of SFN and DIM on promoter methylation profiles in normal PrEC, LnCAP and PC3 prostate cancer cells were determined using methyl-DNA immunoprecipitation followed by genome-wide DNA methylation array. We showed widespread changes in promoter methylation patterns, including both increased and decreased methylation, in all three prostate cell lines in response to SFN or DIM treatments. In particular, SFN and DIM altered promoter methylation in distinct sets of genes in PrEC, LnCAP, and PC3 cells, but shared similar gene targets within a single cell line. We further showed that SFN and DIM reversed many of the cancer-associated methylation alterations, including aberrantly methylated genes that are dysregulated or are highly involved in cancer progression. Overall, our data suggested that both SFN and DIM are epigenetic modulators that have broad and complex effects on DNA methylation profiles in both normal and cancerous prostate epithelial cells. Results from our study may provide new insights into the epigenetic mechanisms by which SFN and DIM exert their cancer chemopreventive effects.

Highlights

  • Epigenetic mechanisms are essential for regulating and maintaining gene expression patterns

  • We assessed the effects of SFN and DIM on the expression of DNMT1, DNMT3A, and DNMT3B in normal prostate epithelial cells (PrEC), androgen-dependent (LnCAP) and androgen-independent (PC3) prostate cancer cells

  • Functional annotation analyses indicated that genes with altered methylation profile in prostate cancer cells were enriched in genes that are dysregulated or involved in cancer progression, including Gene Ontology (GO) categories associated with cell migration, cell adhesion, cell-cell signaling, as well as transcription regulation

Read more

Summary

Introduction

Epigenetic mechanisms are essential for regulating and maintaining gene expression patterns. Dysregulated epigenetic processes, including aberrant DNA methylation, histone modification, and microRNA profiles, lead to altered gene expression and function and play an important role in carcinogenesis. Overexpression of DNMTs is observed in many cancers, including leukemia [4], pancreatic cancer [5], gastric cancer [6], lung cancer [7], and prostate cancer [8], and dysregulated DNMT expression likely is one of the contributing factors leading to aberrant DNA methylation patterns during cancer progression. The ability of dietary factors to exert epigenetic effects underscores the potential importance of specific nutrients and bioactive phytochemicals in epigenetic regulation and cancer chemoprevention strategies

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call