Abstract

Complete anaerobic dechlorination of chlorinated solvents such as trichloroethene (TCE) is essential for bioremediation of chloroethene-contaminated sites. We studied the influence of sulfate on microbial dechlorination of TCE to ethene both under transient and steady-state conditions, encompassing the range of hydrogen (H 2) levels commonly found at contaminated sites. The results show that sulfate at a concentration of 2.5 mM limits microbial dechlorination by a mixed anaerobic culture by reducing the rate under steady-state hydrogen supply (a few nM H 2), implying a H 2 limited dechlorination. Conversely, sulfate did not affect dechlorination when rapid fermentation of lactate resulted in transient buildup of H 2 to levels around two orders of magnitude higher compared to steady-state conditions. This has important implications both for optimizing culture conditions for dehalogenating microorganisms and for the efficiency of cleanup strategies. Our findings may contribute to the understanding and bioremediation of chloroethene contaminated environments containing sulfate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.