Abstract

The effects of addition of sugar beet pectin (SBP) on the pasting, rheological, thermal, and microstructural properties of wheat starch (WS) were investigated. Results revealed that SBP addition significantly increased the peak viscosity, trough viscosity, breakdown value, final viscosity, and setback value of WS, whereas decreased the pasting temperature. SBP raised the swelling power (from 13.44 to 21.32 g/g) and endothermic enthalpy (ΔH, from 8.17 to 8.98 J/g), but decreased the transparency (from 9.70 % to 1.37 %). Regarding rheological properties, WS-SBP mixtures exhibited a pseudo-plastic behavior, and SBP enhanced the viscoelasticity, but decreased the deformability. Particle size distribution analysis confirmed that SBP promoted the swelling of WS granules. Fourier-transform infrared spectroscopy results suggested that the interactions between SBP and WS did not involve covalent bonding, and the formation of ordered structure was inhibited by SBP addition. Additionally, scanning electron microscopy observation found that the gel network of WS-SBP mixtures became more irregular, pore size gradually decreased, and the wall became thinner as the SBP concentration increased. These results indicated that SBP is a promising non-starch polysaccharide that can enhance the processing properties of WS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call