Abstract
The classical (Levins) metapopulation scenario envisions a species persisting in a network of habitat patches through a balance between frequent local (within-patch) extinctions and recolonizations. Although this is the dominant paradigm for species in fragmented habitats, empirical support is limited, and it has been argued that very restrictive conditions on migration rates are required: high enough for recolonization to balance extinctions, but low enough that local populations do not fluctuate in synchrony. Through simulation and analysis of a stochastic spatial model, we argue that the likelihood of persistence via the classical scenario is strongly affected by some basic properties of within-patch successional dynamics whose importance has not been emphasized in metapopulation theory: the distribution of successional stage durations, and whether patches are “refractory” vs. immediately available for recolonization after an extinction has occurred. These properties are tied to the biological causes o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.