Abstract

Small-molecule organic solar cells (SMOSCs) have attracted considerable attention owing to the merits of small molecules, such as easy purification, well-defined chemical structure. To achieve high-performance SMOSCs, the rational design of well-matched donor and acceptor materials is extremely essential. In this work, two new small molecular donor materials with subtle change in the conjugated side thiophene rings are synthesized. The subtle change significantly affects the photovoltaic performance of molecular donors. Compared with chlorinated molecule MDJ-Cl, the non-chlorinated analogue MDJ exhibits decreased miscibility with the non-fullerene acceptor Y6, can more efficiently quench the excitons of Y6. As a result, a improved PCE of 11.16% is obtained for MDJ:Y6 based SMOSCs. The results highlight the importance of fine-tuning the molecular structure to achieve high-performance SMOSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.