Abstract

Nanochromium coatings were deposited on 316L stainless steel bipolar plates of a proton-exchange membrane fuel cell (PEMFC) by a direct current magnetron sputtering technique. The effect of substrate temperature on the corrosion resistance of nanochromium coatings was investigated. The corrosion performance of the bare and chromium-coated steel in a simulated environment of PEMFC (0.5 M H2SO4+ 2 ppm F−) was studied using electrochemical impedance spectroscopy, polarisation, and open circuit potential measurements. The results showed that the corrosion rates of two nanochromium coatings deposited at 300°C and 500°C were lower than those of uncoated steel by more than one order of magnitude. Electrochemical impedance spectra of both nanochromium coatings exhibited distinct characteristics in corrosive solution. The nanochromium coating deposited at 500°C showed superior stability in the corrosive solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.