Abstract

Al(Ga)N/GaN resonant tunneling diodes (RTDs) are grown by metal-organic chemical vapor deposition. The effects of material quality on room temperature negative differential resistance (NDR) behaviour of RTDs are investigated by growing the RTD structure on AlN, GaN, and lateral epitaxial overgrowth GaN templates. This reveals that NDR characteristics of RTDs are very sensitive to material quality (such as surface roughness and dislocations density). The effects of the aluminum content of AlGaN double barriers (DB) and polarization fields on NDR characteristic of AlGaN/GaN RTDs were also investigated by employing low dislocation density c-plane (polar) and m-plane (nonpolar) freestanding GaN substrates. Lower aluminum content in the DB RTD active layer and minimization of dislocations and polarization fields enabled a more reliable and reproducible NDR behaviour at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.