Abstract

AbstractWe report on the π–π interactions between graphene quantum dots (GQDs) and the following cobalt phthalocyanine derivatives: cobalt monocarboxyphenoxy phthalocyanine (complex 1), cobalt tetracarboxyphenoxyphthalocyanine (complex 2), and cobalt tetraaminophenoxy phthalocyanine (complex 3). The conjugates (conj) with GQDs are represented as 1@GQDs(conj), 2@GQDs(conj) and 3@GQDs(conj), respectively. The resulting phthalocyanine/GQDs conjugates were adsorbed on containing a glassy carbon electrode (GCE) using the drop and dry method. We explore the electrochemical properties of phthalocyanines functionalized with both electron withdrawing groups and electron donating groups when non‐covalently linked to the π‐electron rich graphene quantum dots. GCE/3, GCE/2@GQDs(conj) and GCE/1@GQDs(conj) had the lowest limits of detection (LOD). Sequentially modified electrodes showed less favourable detection limits compared to the conjugates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call